

By Daniel Lewis, Josh Oxby 10 December 2024

# **Energy security and AI**



### **Overview**

- Artificial intelligence (AI) and machine learning have a range of current and emerging applications within the energy sector, with the potential to optimise and accelerate energy planning, generation, and use.
- AI could use data from devices such as smart meters and substation monitoring to help address current regional renewable connection delays and excessive network congestion. It could also speed-up decarbonisation of the energy system as the UK strives to meet 2030 grid decarbonisation, 2050 Net Zero targets and reduce costs for consumers.
- There are technical and infrastructural barriers to wider adoption of AI in the energy system, including data access, regulation, skills gaps, and availability and reliability of the physical infrastructure that supports AI.
- Stakeholders have raised concerns around privacy, cyber security, energy use, fairness, ethical use, and operational challenges.
- Stakeholders suggest that more support is needed to develop AI in the sector, and that regulation needs to change to ensure optimal benefits can be gained from wider integration of AI in the energy system, while avoiding potential risks.

## **Background**

Global intergovernmental organisations suggest that artificial intelligence (AI) and machine learning (ML) could play a significant role in addressing energy system limitations and the transition to Net Zero. 1-3

The UK Government has committed to decarbonising the national electricity grid by 2030 under the Department of Energy and Net Zero Mission Control initiative, <sup>4,5</sup> pulling the previous target forward by five years, <sup>6</sup> which largely requires increasing electricity generation from renewable sources.

The use of AI has the potential to reduce strain on the network and speed-up renewable connections as the UK works to meet its Net Zero targets, while also reducing costs from the operator to the consumer.<sup>7,8</sup>

The UK grid is facing regional renewable connection delays, with green energy projects facing waiting times of 10 to 15 years<sup>9,10</sup> and 63% of projects in the pipeline not changing development status between 2018 and 2023.<sup>11</sup> The network is also limited by capacity bottlenecks driven by excessive network congestion and aging infrastructure.<sup>12</sup> The queue<sup>a</sup> for renewable connection sits at over 700GW according to Energy UK and Ofgem, with estimates this could rise to 800GW by the end of 2024.<sup>19,20</sup> This is four times more than predicted capacity needs by 2050.<sup>21,22,23</sup>

At present, to maintain network stability and manage network constraints caused by maintenance outages or network limitations the National Energy System Operator (NESO) pays constraint payments to energy generators such as gas power stations and renewable energy generators to turn up or turn down their output. In the 2023/2024 financial year, constraint costs were £1.6 billion, making up around 65% of overall balancing costs and roughly 2% of a consumer electricity bill. NESO forecasts that in the next five years this could exceed £3 billion annually.  $^{12}$ 

Greenbyte AB, a renewable energy management platform, estimate that the world's wind turbines generate more than 400 billion points of data annually, data which could be used to better understand turbine performance.<sup>13</sup> There is potential for AI and ML technologies to leverage this type of big data to improve the efficiency of energy generation, storage and use.<sup>14,15</sup>

However, there are uncertainties around the use of AI tools, with some stakeholders expressing concerns over privacy, security, transparency, and ethical use.

This note will explain the current and emerging applications of AI and ML in the energy system; barriers to wider implementation; the challenges likely to be encountered; and policy considerations proposed by stakeholders.

<sup>&</sup>lt;sup>a</sup> The process for new connections (including renewable energy generators) involves an optional preapplication process and formal application process. <sup>16</sup> While projects await connection after going through the formal application process they remain in a queue and are rarely withdrawn, meaning other projects that are ready to go can be blocked. <sup>17</sup> In November 2023 Ofgem announced new queue management process measures to remove stalled projects from the queue. <sup>18</sup>

# What is AI in the context of energy security?

#### AI and ML

AI does not currently have a universally agreed definition.<sup>24</sup> The UK Government's 2023 policy paper defines AI as "products or services" that are "adaptable" and "autonomous".<sup>25</sup> ML is a subset of AI that is capable of learning by finding patterns in data, before applying these findings to make predictions or generate outputs (PB 57).<sup>26</sup> ML can be split into two distinct classes, generative and predictive: <sup>27</sup>

- Generative AI is used to create new content, such as ChatGPT.<sup>28,29</sup>
- Predictive AI is used to forecast patterns and identify future trends based on existing data.<sup>30</sup>

Industry stakeholders indicate that predictive AI will provide key benefits to the energy system. In all cases, access to data is required for training the AI model (<u>PB 57</u>).

## **Energy security**

There is no agreed definition for energy security,<sup>31</sup> though the definition set out by the International Energy Agency (IEA) of "the uninterrupted availability of energy at an affordable price" is commonly used (PN 676).<sup>32</sup>

AI is already being developed and used in the UK grid, predominantly by the national transmission network and energy system operators<sup>b</sup> for forecasting and maintenance.<sup>37–40</sup>

Wider implementation of AI and ML in the energy system could optimise energy planning, generation and use.<sup>32</sup> Ofgem suggest that benefits will apply across the value chain, from operators through to consumers. Academic stakeholders expect improved efficiency to allow lower cost energy for consumers and increased capacity to balance the grid to reduce or delay the need for large infrastructure investments.

However, industry stakeholders note that investment in physical grid infrastructure is critical to ensuring long-term energy security of the UK. AI could help to increase the number of renewable generators connected to the network, which could accelerate the transition towards a decarbonised grid and Net Zero targets.<sup>8,41</sup>

<sup>&</sup>lt;sup>b</sup> The National Energy System Operator (NESO) oversees and operates the electricity system, balancing supply and demand.<sup>33</sup> National Grid manages the high-voltage national transmission network, transporting electricity from generators and interconnectors.<sup>34</sup> Distribution Network Operators (DNOs) own and operate regional systems of cables and towers, and are licensed to distribute electricity to suppliers.<sup>35,36</sup>

# Applications of AI and ML in the energy sector

AI and ML have a range of existing and possible uses within the energy sector, from network scale operations to consumer level:

| Table 1: Applications of AI and ML in the energy sector |                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                      |  |  |
|---------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Application                                             | Explanation                                                                                                                                                                                                                                                                                                                                                                    | Impact                                                                                                                                                                                                               |  |  |
| Improved forecasting of renewable energy                | Renewable energy generation, such as wind and solar photovoltaic (PV), is inherently intermittent (PN 464). <sup>42</sup> AI models can predict energy generation using weather patterns and historical outputs, continually learning to produce incrementally more accurate predictions on the amount of energy that will be available from these sources. <sup>43–45</sup>   | NESO in collaboration with the Alan<br>Turing Institute reported a 33%<br>improvement in solar forecasting with<br>the use of AI, which helps reduce the<br>cost of running the grid. <sup>46</sup>                  |  |  |
| Optimised efficiency of renewable energy generation     | AI can be deployed to wind turbines and solar panels, adapting to changing conditions in real-time to, for example, adjust the orientation and tilt of solar panels, <sup>47,48</sup> or the pitch and yaw of wind turbine blades to maximise output. <sup>49</sup>                                                                                                            | The New Scientist reported that the uptake of AI in wind turbines globally would improve efficiency by 0.3%, enough extra energy to power a moderately sized country. <sup>50</sup>                                  |  |  |
| Improved energy load forecasting                        | AI utilises historical data and information from smart devices on consumer behaviour to predict expected energy demand. The ability of AI to process real-time data allows forecasts to be continually updated, improving accuracy. AI can identify complex patterns of usage where demand is volatile, that traditional forecasting methods would be unable to capture. 52,53 | More precise estimations of peak usage times enable easier balancing of supply to the network. <sup>53</sup> Short-term load forecasting with AI has consistently demonstrated 95% accuracy or higher. <sup>54</sup> |  |  |
| Predictive<br>maintenance                               | Tracking the health status of physical assets, such as sensors monitoring the thermal condition of transmission cables or remote inspection of offshore wind farms. <sup>53</sup> Using AI to proactively identify potential equipment failures before they occur could minimise downtime, increase asset lifespan and reduce costs. <sup>75,76</sup>                          | According to a report across 268 companies by PWC, predictive maintenance can extend asset lifetime by 20% and decrease maintenance costs by 12%. <sup>77</sup>                                                      |  |  |

| Energy storage optimisation    | Batteries are important for maintaining a consistent energy supply in the grid, especially with increasing renewable generation. AI can predict optimum times for charging and discharging. He was monitoring battery degradation AI may help to extend the lifespan of energy storage systems.                                                                      | Use of an AI model demonstrated a 4.6% reduction in capacity decay rate after 3300 charging and discharging cycles. <sup>66</sup>                                                                                                   |
|--------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Cyber security                 | As the energy system becomes more digitalised there is an increased risk of cyber-attacks. AI can continuously monitor network activity to assist in detecting and responding to cyber security threats in real-time. 53,73                                                                                                                                          | A 2024 report of 604 organisations from the Ponemon Institute found that organisations using AI to automate cyber security saved on average US \$1.88 million and shortened breach containment lifecycle by 108 days. <sup>74</sup> |
| Market design<br>and operation | As the energy market becomes more decentralised with distributed local renewable energy production, the energy market will become more complex. <sup>53</sup> According to research organisation RAND, AI could optimise the market by managing microgrids <sup>c</sup> , localised pricing and peer-to-peer trading with automated real-time pricing. <sup>40</sup> | The use of AI in energy markets could disrupt the current centralised wholesale approach. <sup>79</sup> This should, in theory, lower costs for the consumer.                                                                       |
| Project planning               | AI can be used to identify optimal locations for new renewable energy projects. 91 Using AI-powered drones to perform aerial surveys and land mapping, or analysing weather patterns while accounting for environmental regulations to expedite the planning and deployment of renewable energy connections. 91,92                                                   | According to Offshore Renewable Energy (ORE) Catapult, innovative technologies like AI have the potential to reduce consenting timelines from five to three years, a time saving of 40%. <sup>93</sup>                              |
| Data gap filling               | Sensor coverage does not penetrate all areas and generators producing less than the 1MW threshold do not need to be registered. <sup>83,84</sup> For accurate predictions this energy use and generation needs to be accounted for. AI could be used to model fragmented, inconsistent or missing data. <sup>53</sup>                                                | ML algorithms outperform standard<br>models in estimating missing solar<br>energy generation data. <sup>85</sup>                                                                                                                    |

<sup>&</sup>lt;sup>c</sup> Microgrids are small-scale, controllable energy grids serving a localised area such as a university campus.<sup>86,87</sup> They are connected to the main grid but can be self-contained and operate independently to protect the local network.<sup>87,88</sup>

| Data extraction and integration                         | Large amounts of historical energy data are still held as physical records. AI could automate the digitisation of such records, allowing their use in future predictions. <sup>78</sup> Distribution network operators (DNOs) currently run independent systems with different types of metering. <sup>79</sup> AI could assist in making these datasets more interoperable. <sup>80</sup> | UK Power Networks partnered with<br>Google Deepmind to use image<br>recognition software to digitise hand-<br>drawn electricity cable maps spanning<br>over 180,000km. <sup>81</sup> The use of AI cut<br>20,000 hours of manual scanning work<br>down to 15 minutes. <sup>82</sup>                                                                                                                                                                                 |
|---------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Benchmarking                                            | AI could identify cases of suspected energy theft by measuring electricity demand from properties and benchmarking expected usage patterns to recognise anomalies. <sup>67,68</sup>                                                                                                                                                                                                        | A 2021 study across 138 countries by the Northeast group found that electricity theft and non-technical losses cost utilities US \$101.2 billion per year in lost revenue. <sup>69</sup> Several AI energy theft identification models have been put forward, with reported detection rates ranging from 93-94% and false-positive rates of 1.1-11%. <sup>70-72</sup>                                                                                               |
| Smart grid<br>management<br>and demand side<br>response | AI functions in the automation of smart grids, comprising of advanced monitoring with two-way communication to detect and respond to energy usage in real-time. <sup>55,56</sup> Through control of smart and Internet of Things (IoT) <sup>d</sup> devices, AI can adjust electricity consumption to match available supply (PN 715).                                                     | US utility company Florida Power and Light utilised smart meter data to optimise grid management, saving US \$30 million in operational costs in 2014. <sup>58</sup> According to Juniper research, smart grids are forecasted to save US \$291 billion in global energy costs by 2029. <sup>59</sup> The Amsterdam City-Zen smart grid retrofitting project achieved an estimated annual reduction of 35,000 tonnes of CO <sub>2</sub> emissions. <sup>60,61</sup> |
| Automated<br>frequency<br>control                       | The power grid must maintain power flows between acceptable frequency ranges at all times to ensure stability. <sup>89</sup> The calculations are computationally demanding and often have to be simplified to obtain rapid solution. <sup>41</sup> AI can automate this process, learning optimal solutions and accelerating solutions. <sup>41,90</sup>                                  | No current instance / example of measurable impact.                                                                                                                                                                                                                                                                                                                                                                                                                 |

<sup>&</sup>lt;sup>d</sup> The Internet of Things (IoT) refers to the network of physical devices that are embedded with sensors and network connectivity, capable of collecting and sharing data, such as smart meters, electric vehicles and other smart appliances.<sup>57</sup>

## Impacts on energy systems

## **Potential barriers**

There are a range of factors that currently pose a barrier to the adoption and deployment of AI more widely within the energy sector, which can broadly be divided into technical and infrastructure barriers.

#### **Technical barriers**

#### **Explainability**

High performance AI models are generally complex, so decision-making processes can be complex.  $^{40,94}$  This is often referred to as 'black-box AI'e, where it can be difficult to understand and explain how an AI model decided on a certain outcome (PN 633).  $^{95}$ 

The electricity system is classified as a Critical National Infrastructure<sup>f</sup>, so the ability to trace the chain of decision making is of particular importance.<sup>97</sup> The lack of explainability around the decisions taken by AI has impacted stakeholder confidence and slowed uptake within the energy sector.<sup>98</sup> Advances in explainable AI are important to support deployment of applications as the energy system transitions to decarbonisation.<sup>41</sup>

#### **Culture**

The IEA suggests that the energy industry is traditionally resistant to rapid change and has a relatively conservative management culture.¹ Stakeholders suggest that while risk averse planning is done with the right intentions, this mindset acts as a blocker to innovation. According to classification society Det Norske Veritas (DNV), navigating resistance to change will be crucial in unlocking the full capacity of AI in the energy sector.<sup>99</sup>

#### **Data access**

The quality of an AI model is dependent on the quality and volume of data on which it is trained (<u>PB 57</u>). <sup>100</sup> Smart meter data is considered as personally identifiable under GDPR and access is governed by Data Access and Privacy Framework (DAPF). <sup>101</sup> Smart meter data is currently mainly limited to energy suppliers and Distribution Network Operators (DNOs). <sup>102</sup> Many of the datasets are siloed due to commercial sensitivity or regional inconsistencies in DNO data privacy policy making it unclear what data can be shared. <sup>79</sup> However, aggregated smart meter data is now

<sup>&</sup>lt;sup>e</sup> Black box AI refers to AI systems with internal decision-making processes that are not transparent.<sup>95</sup> While inputs and outputs can be understood, the systems powering the model may be so complex that they are uninterpretable to humans.<sup>95</sup>

f Critical National Infrastructure refers to "assets, facilities, systems, networks or processes and the essential workers that operate them", the loss or compromise of which could lead to "Major detrimental impact on the availability, integrity or delivery of essential services", including those that could "result in significant loss of life or casualties" or "significantly impact national security, national defence, or the functioning of the state". 96

classified as open energy system data with DNOs required to publish aggregated consumption data. 103,104

Stakeholders identified access to data, especially granular data, as a limiting factor for innovators in this area. In July 2024 Ofgem released a consultation on the governance of data sharing infrastructure, with the intention of driving greater availability and standardisation of data. NESO is currently developing 'Data Sharing Infrastructure', formerly the 'Digital Spine''g, where it will act as the single coordinator allowing access to relevant data for certain stakeholders. 108

#### **Jobs and skills**

The UK is facing a skills gap in personnel with energy sector knowledge and digital literacy (PN 697). A 2023 survey by Energy Systems Catapult found that 40% of businesses in the energy sector found it difficult to hire data scientists with the necessary skills. A survey of 604 organisations across 16 countries, conducted by IBM and Ponemon Institute, reported that the cyber skills gap has grown by 26.2% between 2023 and 2024. There is a suggestion that AI may have a role in addressing the energy sector knowledge skills gap, by combining energy industry knowledge that is often fragmented and accessible only to specialists. It

Industry stakeholders point to the need to make positions within energy more competitive to attract the necessary AI talent, and workforce upskilling initiatives. According to a survey conducted by Microsoft, Masdar and the Abu Dhabi National Oil Company (ADNOC), 78% of business leaders consider talent and training a challenge in adoption of AI. 113

#### Regulation

The IEA states that "government policies and regulations will play an important role in the deployment of digital technologies", recommending that regulators consider removing older regulations and introduce new statutes. Industry stakeholders suggest that the established benefit-measuring metrics that drive decision making, funding and bring together industry and government may not fully capture the benefits of AI and developing technologies. 114–116

Academic and industry stakeholders note AI technologies are rapidly advancing, and existing regulatory frameworks may not keep pace, so it is important for regulators to stay up to date with the latest developments.<sup>40</sup>

There are calls from stakeholders to adapt regulatory frameworks to facilitate a supportive environment for innovation, providing incentives encouraging investment in AI development, while ensuring privacy, security and ethical use. 92 Changes to policy and regulation will likely be critical in ensuring the digital transformation of energy is fully realised and to accelerating decarbonisation. 1,41

<sup>&</sup>lt;sup>g</sup> The Digital Spine refers to the data sharing infrastructure plans for the energy system, with a set of rules, processes and technical functions aimed at facilitating secure data exchange for organisation within the energy sector.<sup>106,107</sup>

#### **Infrastructure barriers**

#### **Communication infrastructure**

Communication is central to the real-time operation of power systems as envisioned with smart grids. <sup>117</sup> Distributed edge devices need contact with each other, the main server and low latency 1. <sup>122,123</sup>

However, older power system infrastructure is not thought, by some stakeholders, to be equipped to handle the demands of emerging technologies. <sup>124</sup> A 2022 report from the Energy Digitalisation Taskforce noted the need to improve interoperability <sup>125,126</sup> and recommended updating standards to ensure smart devices are able to communicate with one another. Upfront costs required to upgrade software and hardware necessary for AI integration can be prohibitive. <sup>91</sup>

Stakeholders note that for digitalisation of the energy network, greater coupling is needed between areas the energy system is dependent on, such as the communication network. They suggest co-planning and co-locating infrastructure is required for a productive outcome.

#### **Computing power**

AI is reliant on substantial computing power to train, tune and deploy models. Large-scale models, in particular, require on average 100 times more computing power than other contemporary AI models. 128,129

Intergovernmental stakeholders such as the Organisation for Economic Co-operation and Development (OECD) suggest that sufficient computing power is an important component in expanding integration of AI in the energy system.<sup>130</sup>

Others suggest it will be necessary to address connection bottlenecks and environmental concerns surrounding the scalability of data centres that provide these computing services (Box 1). $^{131-133}$ 

#### **Box 1: Data centres**

AI requires physical infrastructure to support its operations and is energy intensive to train and maintain (PN 677), something stakeholders suggest is often overlooked. According to Statista, as of March 2024 the UK had 514 data centres, the third most globally. <sup>134</sup> Data centres are now designated as "Critical National Infrastructure". <sup>135</sup> Data centres accounted for almost a fifth of all electricity usage in the Republic of Ireland in 2022, an increase of 400% since 2015. <sup>136</sup> Morgan Stanley predicts that the power demand from generative AI will increase at an average of 70% per year over the next three years, largely driven by the growth of

<sup>&</sup>lt;sup>h</sup> Edge devices are computing devices that operate on the edge of the network, such as sensors and actuators.<sup>118</sup> They may be capable of collecting and transmitting data, or hosting a local AI model, and so can be classified as part of the IoT.<sup>118,119</sup>

<sup>&</sup>lt;sup>i</sup> Latency refers to the amount of delay in network communication. <sup>120</sup> A network with low-latency has faster response times. <sup>121</sup>

data centres, and by 2027 may use as much energy as Spain needed to power itself in 2022. 137

Data centres also need to be temperature controlled to prevent overheating. Traditional approaches utilise air cooling. However, liquid cooling has received increasing attention as a thermodynamically efficient alternative. <sup>138,139</sup> Academic stakeholders have raised concerns about the efficiency of cooling with water and the possibility of burdening local resources, <sup>140</sup> especially as centres are generally clustered around major population centres. <sup>141</sup> Estimates from one study have global AI use accounting for between 4.2 and 6.6 billion cubic meters of water by 2027, which is equivalent to approximately two-thirds of England's current annual water consumption. <sup>142,143</sup> Cooling requirements account for 40% of data centre electricity demands. <sup>144</sup> Concerns over energy usage led to Ireland placing a hold on the development of new data centres in Dublin, effective from 2022 to 2028, <sup>145</sup> while a three-year moratorium was imposed in Singapore from 2019 to 2022. <sup>146</sup> and a similar restriction was implemented in Amsterdam from 2019 to 2020. <sup>147,148</sup>

## Challenges for energy system AI use

## **Privacy and security risks**

Academic stakeholders have raised concerns about data privacy and ownership (<u>PB</u> <u>57</u>). According to research consortium EnergyREV, privacy was the most common concern raised by energy sector stakeholders.<sup>149</sup> Energy companies have access to large volumes of personal data, in some cases every half-hour.<sup>40,102</sup> This information could be used to determine socio-economic and demographic profiles, or insight into daily routines of a household.<sup>40,102</sup> This opens up the possibility of discriminative customer segmentation<sup>j</sup>.<sup>150</sup> In the event of a data breach, properties may be at risk of robbery if patterns of unoccupancy can be inferred.<sup>150</sup>

The capacity for AI to extract granular information from overlapping datasets from IoT devices, and the unpredictability with which this information may be used by models, makes it difficult to inform data subjects about what insights are being made from their data. <sup>150,151</sup> A report from ADViCE highlights the need to balance the requirements for sufficient data access and preserving consumer privacy. <sup>53</sup> The smart Meter Implementation Programme (SMIP) has recognised that smart metering presents a significant privacy risk, and so instituted a DAPF, which sets out by whom, and how, data can be accessed. <sup>102</sup>

There are cyber security concerns regarding system operations. Legacy infrastructure designed before cyber security was a concern may expose vulnerabilities, and the globalised nature of asset supply chains makes it difficult to ensure products are procured from trusted sources (PN 554). Malicious actors, from individual hackers to national cyber-offensive programmes, may attempt to launch cyber-attacks on the electricity system, such as the first confirmed cyber-attack specifically against an

<sup>&</sup>lt;sup>j</sup> Discriminative customer segmentation refers to practices that unfairly segment the customer base. For instance, the use of temporary offers to encourage users to share their data, which is subsequently used to identify high-peak time users and offer less favourable tariffs.<sup>150</sup>

electricity network in 2015 in Western Ukraine and subsequent attacks that cut off power to around 255,000 people.<sup>1,152</sup>

Increased use of digital technologies within the electricity system increases the cyber security risks, and the integration of distributed energy sources interconnected with digital systems increases exposure by providing more potential points of entry. <sup>153,154</sup> A spate of cyber-attacks in 2022 impacted German wind turbine operators, <sup>155,156</sup> the first of which interrupted remote monitoring of 5,800 wind turbines with 11GW of energy output. <sup>157–159</sup> AI applications may present the additional vulnerability of false data injection, where adversaries tamper with datasets to 'poison' models and interrupt correct functioning. <sup>40</sup>

#### Fairness and accessibility risks

Ensuring that the use of AI does not exacerbate existing inequalities was identified by intergovernmental stakeholders as a potential concern. Sustainable Energy for All state that in "the AI sector, where the workforce is heavily male dominated...only 12% of positions requiring over 10 years of experience [are] held by women". The lack of diversity in AI development teams could lead to technologies that reflect gender biases. The lack of diversity in AI development teams could lead to technologies that reflect gender biases.

AI models are shaped by the historical data used in their training (<u>PB 57</u>). There is a risk that underlying biases present in initial datasets could lead to unfair outcomes for protected characteristics. <sup>164,165</sup>

Smart devices are currently expensive and, though there is very little information on their demographic uptake, financial constraints consistently emerge as a barrier to their adoption. Academic and NGO stakeholders suggest that due to imbalanced uptake of these devices based on income or region, data currently being generated may not accurately reflect wider energy use patterns, and could potentially lead to AI optimisations that do not benefit digitally excluded consumers.

If AI applications are designed to obtain the optimal outcome economically, there are concerns that this could lead to unethical and biased decision-making.<sup>40</sup> For example, an AI model tasked with reducing peak electricity demand may decide to limit energy to inefficient homes, which are more likely to belong to already disadvantaged people.<sup>40</sup> Academic and regulatory stakeholders note that separate AI models reacting to the same signals may facilitate market manipulation, engaging in activities to make prices higher than they otherwise would be through tacit collusion<sup>k</sup>.<sup>40</sup>

## **Technical and operational risks**

With the 'black box' nature of some AI applications, and outsourcing of AI development to private companies, there is a risk that system operators would be using programmes they do not, and in instances cannot, fully understand, making human intervention difficult. <sup>169</sup> Academic stakeholders note the need for explainable and contestable AI, where dynamic human-machine interaction is used to explain and revise the decision making process, to ensure that AI powered decisions align with intended goals. <sup>170</sup> It is important to be able to diagnose faults and limit unpredictable

<sup>&</sup>lt;sup>k</sup> Tacit collusion refers to algorithms engaging in automated strategies to track prices and introduce common policies to give market signals that optimise joint profits, without explicit collusion from the companies operating them.<sup>168</sup>

system behaviours that could lead to cascading effects that disrupt Critical National Infrastructure, such as the energy system.<sup>40,53,171</sup>

According to a 2023 World Economic Forum report, 23% of jobs globally may be disrupted by AI in the next 5 years ( $\frac{PN}{708}$ ). There are concerns that automation and advancements in AI could reduce the number of staff required in traditional roles within the energy sector, such as field technicians, maintenance staff and data analysts.  $^{1,173-175}$ 

## **Potential mitigation approaches**

## **Privacy-preserving technologies**

'Privacy preserving/enhancing' technologies can be used to maintain the security of sensitive personal information. For example, Federated Learning<sup>1</sup> has data kept locally, and the model is trained locally, with only parameters shared to central servers. <sup>102</sup> Homomorphic Encryption<sup>m</sup> allows operations to be performed on encrypted data without the need for decryption, ensuring the underlying data cannot be accessed. <sup>178</sup> These are just two examples of a range of possible techniques. However, these technologies are complex and may therefore use more energy. <sup>102</sup>

## **Enhanced cyber security and digital literacy**

The EU AI Act sets out how to implement robust cyber security measures and investing in resilience to protect AI systems.<sup>179,180</sup> The US National Institute of Standards and Technology (NIST) released an updated framework for dealing with cyber security threats in 2024,<sup>181</sup> while the National Cyber Security Centre (NCSC) produced guidelines for secure AI system development in 2023.<sup>182</sup> The IEA suggests that digital energy security should be built around:<sup>1</sup>

- Resilience the ability to withstand shocks and adapt quickly.
- Security by design where security objectives are a core part of the design process.
- Cyber hygiene with precautious access right allocation and training in digital literacy for staff.

Stakeholders state that adherence to frameworks such as these, and implementation of clear regulation, can help to reduce the cyber security risks associated with AI in the energy system.

AI could also play a role in proactive threat detection, in efforts to identify and mitigate cyber intrusions before they occur. 183,184 Microgrid electricity networks may

<sup>&</sup>lt;sup>1</sup> Federated Learning is a distributed machine learning technique, using multiple servers to share model updates without exchanging raw data.<sup>176</sup>

<sup>&</sup>lt;sup>m</sup> Homomorphic Encryption is a cryptographic approach that, unlike conventional encryption, allows information to be processed while it remains encrypted.<sup>177</sup>

benefit from being 'islanded', through temporary segregation from the rest of the network in the event an attack, to limit the scale of outages.<sup>1</sup>

#### **Balanced model training and validation**

Fair datasets hold the key to unbiased and equitable outcomes, <sup>185</sup> so it is important that the data used to train models is as representative as possible. Development of AI applications that are explainable and interpretable will contribute to improved accuracy, reliability and robustness, to limit potential biases and fairness concerns in models. <sup>98,186</sup>

Academic and NGO stakeholders suggest including humans in the training process. Interrogating decisions and contesting outputs could allow movement towards a 'grey box' model, with greater transparency of the whole process from design to deployment. The government recently announced an AI assurance platform, intended to increase trust by mitigating risks and drive adoption of responsible AI.<sup>187</sup>

A 2024 Deloitte risk management report recommends: 188

- Certification on the adequacy, representativeness and quality of data used in AI training.
- Data cleansing and label checking to eliminate errors.
- Concrete and trustworthy demonstration from developers that systems adhere to ethical and legal standards.
- Thorough testing of models on diverse datasets for validation.
- Continuous performance tracking to ensure reliability and transparency are maintained.

## **Financial support**

To realise the full potential of AI optimisation in the energy system, academic and industry stakeholders suggest clear regulations and incentives are needed to attract investment. Prove Investment from government and research funders in sector specific research for energy data and AI could create an ethics-conscious, pro-innovation culture. Careful planning and significant investment in AI technologies could overcome the challenges of AI.

In 2023, the government announced the Manchester Prize AI initiative, a multi-million pound and multi-year challenge, the second round of which is aimed at clean energy systems. 190-192

Stakeholders highlighted the need for investment in making trust in AI happen, the creation of suitable sandboxes for innovation and subsidies to support the equitable implementation of AI-based energy solutions, to ensure underserved communities are not left behind in the energy transition.<sup>189</sup>

## Standardised processes and ethical oversight

Clear protocols, regular re-evaluations and regulatory oversight could help move approaches beyond legal compliance towards ethical best practice. 149,184,193 The EU AI

Act calls for authorised auditors with access to algorithms, data, and the decision making process to assess regulatory compliance. 180

Stakeholders suggest that there is an opportunity for the UK to establish itself as a global leader by setting 'gold-standard' best practice guidelines and ethical frameworks.

Stakeholders also note the importance of forward planning and the need to approach risks in a less siloed way. For instance, regulation of infrastructure surrounding AI such as green data centre hosting requirements or sustainability reporting schemes currently being explored and implemented by the European Commission. 194,195

# Impacts on energy systems and market approaches

As the grid becomes more distributed, with increased generation capacity and greater rates of digitisation ( $\underline{PN~655}$ ), AI could also help automate 'bidirectional markets'<sup>n</sup>. <sup>196</sup> AI could manage complex interactions between local markets or microgrids, and rapidly react to granular market signals to facilitate dynamic real-time peer-to-peer trading. <sup>79,197–200</sup> Expansion of mechanisms such as demand side response ( $\underline{PN~715}$ ), coupled with small scale renewable generation, could transform end users from passive consumers to active participants in the energy system. The IEA has suggested that distributed generation developments could transform the way that electricity supply functions. <sup>1</sup>

Industry stakeholders suggest that while AI is a tool for optimising transition of the energy system, it is not the driver of these changes.<sup>201–204</sup> Some stakeholders also suggest that there will be very little impact in the next decade, as the current energy sector is not designed for rapid adaptive changes.

## **Policy considerations**

| Policy consideration                     | Explanation                                                                                                                                                                                                                                                                                                      |
|------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Reframing energy and consumer engagement | <ul> <li>Rethink energy as a shared resource, promoting sustainable use and prioritising consumer transparency and engagement as active participants.</li> <li>Understanding user perspectives and motivating technology adoption are important for a shared commitment to the energy transformation.</li> </ul> |
| Cyber security and system resilience     | Cyber security updates and factoring in real-world disaster<br>scenarios (such as flooding) could be important considerations                                                                                                                                                                                    |

<sup>&</sup>lt;sup>n</sup> Bidirectional energy markets allow power to flow both to and from the centralised energy system, enabling small, distributed energy generators to use energy from the grid when required, and sell energy to the grid when production is in excess.<sup>196</sup>

|                                                 | <ul> <li>given the critical nature of the electricity supply and interconnectedness with other Critical National Infrastructure.</li> <li>Stakeholders noted that AI systems will need to be resilient and equipped for cyber defence with the ability to report attacks and factor in supply chain vulnerabilities in physical infrastructure.</li> </ul>                                                                                                                 |
|-------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Environmental and infrastructure considerations | <ul> <li>AI is an energy intensive product, and data centres that support it have a large environmental footprint. Stakeholders suggest regulation is needed, reducing the carbon footprint of data centres to align with sustainability and Net Zero targets.<sup>205</sup></li> <li>Investment in transmission networks and physical infrastructure would be needed to support AI-enhanced energy systems, while AI can optimise planning for these projects.</li> </ul> |
| Governance, planning, and regulatory updates    | <ul> <li>Stakeholders suggest that AI requires updated governance, long-term energy system planning, and incentives for data access.</li> <li>Regularly updated standards, clear collaborative regulatory frameworks, and national energy plans would be important considerations ensuring the safe and responsible integration of AI.</li> </ul>                                                                                                                          |
| Trust, transparency, and ethical standards      | <ul> <li>Building trust in AI requires traceability, explainability, and privacy with a clear framework for contestable and transparent AI.</li> <li>The UK has an opportunity to lead with ethical standards, transparency, and community engagement, ensuring AI assumptions are explainable to the public.</li> </ul>                                                                                                                                                   |
| Investment in skills and capacity               | <ul> <li>Investment in digital literacy, AI education, competitive job conditions (PN 697) and industry support to develop system capabilities will be important considerations.</li> <li>Stakeholders suggest that AI hubs and local supply chains could strengthen energy sector resilience and innovation.</li> </ul>                                                                                                                                                   |
| Role and responsible use                        | <ul> <li>AI is a supporting tool and not the solution in isolation. Responsible use with oversight, regulatory scrutiny, and measurable standards could maximise its positive impact.</li> <li>Stakeholders suggest the focus should be on specific AI applications, such as forecasting and system optimisation to increase the rate of energy system decarbonisation and avoid over-reliance on supportive tools such as predictive maintenance.</li> </ul>              |

## References

- International Energy Agency (2017). Digitalization and Energy.
- 2. Energy Systems Catapult <u>AI in Energy</u>. *Energy Systems Catapult*.
- 3. OECD (2024). OECD Digital
  Economy Outlook 2024 (Volume 2).
  OECD.
- 4. Labour Party Change Labour Party Manifesto 2024.
- 5. S and P Glbal (2024). <u>UK to release</u> 2030 clean power action plan by end-2024: <u>Mission Control.</u>
- 6. UK Government <u>Plans unveiled to</u> decarbonise UK power system by 2035. *GOV.UK*.
- 7. Ofgem Ofgem's strategic approach to AI.
- 8. World Economic Forum (2021).

  Here's how AI will accelerate the
  energy transition. World Economic
  Forum.
- Financial Times <u>Renewables groups</u> sound alarm over UK grid connection delays.
- BBC News (2023). <u>Renewable</u> <u>energy projects worth billions stuck</u> <u>on hold.</u> <u>BBC News.</u>
- 11. Cornwall Insight (2024). <u>Two thirds</u> of renewables applications fail to get through planning stage.
- 12. (2023). London's Aging Power Grid Undermines British AI Ambitions, Virtus Warns. *Bloomberg.com*.
- 13. Reve (2020). The World's Wind
  Turbines Are Registering More Than
  400 Billion Individual Data Points
  Every Year.
- 14. Kalaichelvi, N. et al. (2023).

  <u>Internet of Things Toward</u>
  <u>Leveraging Renewable Energy.</u> in

  AI-Powered IoT in the Energy

  Industry: Digital Technology and

  Sustainable Energy Systems. (eds.

  Vijayalakshmi, S. et al.) 99–118.

  Springer International Publishing.
- 15. Arshi, O. *et al.* (2024). <u>IoT in</u> energy: a comprehensive review of technologies, applications, and

- <u>future directions.</u> *Peer-to-Peer Netw. Appl.*, Vol 17, 2830–2869.
- 16. National Grid <u>The detailed</u> connections process.
- 17. National Grid Queue management: the next step in accelerating grid connections | National Grid ET.
- 18. Ofgem (2023). Ofgem announces tough new policy to clear 'zombie projects' and cut waiting time for energy grid connection.
- 19. Ofgem (2024). <u>Preparing for a faster, more efficient electricity connections process.</u>
- 20. Energy UK <u>Getting Britain</u>
  <u>Connected, part 1: Energy</u>
  <u>connections in GB's transition to</u>
  <u>Net Zero. Energy UK.</u>
- 21. (2024). <u>Preparing for a faster, more efficient electricity connections</u> process | Ofgem.
- 22. National Energy System Operator <u>Future Energy Scenarios (FES).</u>
- 23. NESO Connections Reform.
- 24. Sheikh, H. *et al.* (2023). Artificial Intelligence: Definition and Background. in *Mission AI: The New System Technology*. (eds. Sheikh, H. et al.) 15–41. Springer International Publishing.
- 25. UK Govenment (2023). AI regulation: a pro-innovation approach. GOV.UK.
- 26. The Alan Turing Institute <u>Data</u> science and AI glossary. The Alan Turing Institute.
- 27. IBM (2024). Generative AI vs. predictive AI: What's the difference? IBM Blog.
- 28. The New York Times (2022). The Brilliance and Weirdness of ChatGPT. The New York Times.
- 29. Gupta, B. *et al.* (2023). <u>ChatGPT: A brief narrative review.</u> *Cogent Business & Management*, Vol 10, 2275851. Cogent OA.
- 30. IBM (2024). What Is Predictive AI?
- 31. Ang, B. W. *et al.* (2015). <u>Energy</u> security: Definitions, dimensions

- and indexes. Renewable and Sustainable Energy Reviews, Vol 42, 1077–1093.
- 32. IEA <u>Energy Security</u>. *International Energy Agency*.
- 33. National Energy System Operator National Energy System Operator (NESO).
- 34. National Grid. National Grid.
- 35. OVO Energy <u>DNOs: Who is my</u>
  <u>Distribution Network Operator?</u>
- 36. Vattenfall <u>How the National Grid</u> works. *Vattenfall IDNO*.
- 37. sees.ai Third Contract with National Grid Electricity Transmission
  (NGET) now underway.
- 38. Ofgem <u>Artificial Intelligence (AI)</u> within the energy sector.
- 39. Smart Energy International (2021).

  National Grid looks to AI to improve solar forecasting in UK. Smart Energy International.
- 40. RAND The use of AI for improving energy security: Exploring the risks and opportunities of the deployment of AI applications in the electricity system.
- 41. Energy Systems Catapult *et al.* AI <u>Carbon Challenge ADViCE.</u>
- 42. Ren, G. et al. (2017). Overview of wind power intermittency: Impacts, measurements, and mitigation solutions. Applied Energy, Vol 204, 47–65.
- 43. Li, Y. *et al.* (2024). Artificial intelligence-based methods for renewable power system operation.

  Nat Rev Electr Eng, Vol 1, 163–179.

  Nature Publishing Group.
- 44. Kumari, P. *et al.* (2021). <u>Deep learning models for solar irradiance forecasting: A comprehensive review. *Journal of Cleaner Production*, Vol 318, 128566.</u>
- 45. Lai, J.-P. *et al.* (2020). A Survey of Machine Learning Models in Renewable Energy Predictions.

  Applied Sciences, Vol 10, 5975.

  Multidisciplinary Digital Publishing Institute.
- 46. National Energy System Operator ESO and The Alan Turing Institute

- use machine learning to help balance the GB electricity grid.
- 47. Mohammad, A. et al. (2023).

  Revolutionizing Solar Energy: The
  Impact of Artificial Intelligence on
  Photovoltaic Systems. International
  Journal of Multidisciplinary Sciences
  and Arts, Vol 2,
- 48. Seme, S. et al. (2020). Solar
  Photovoltaic Tracking Systems for
  Electricity Generation: A Review.
  Energies, Vol 13, 4224.
  Multidisciplinary Digital Publishing
  Institute.
- 49. Neustroev, G. (2022). Deep Reinforcement Learning for Active Wake Control.
- 50. New Scientist Software update for world's wind farms could power millions more homes. New Scientist.
- 51. Bedi, J. *et al.* (2019). <u>Deep learning framework to forecast electricity demand.</u> *Applied Energy*, Vol 238, 1312–1326.
- 52. Perera, A. T. D. *et al.* (2021).

  <u>Applications of reinforcement learning in energy systems.</u> *Renewable and Sustainable Energy Reviews*, Vol 137, 110618.
- 53. Energy Systems Catapult *et al.*<u>ADViCE: AI for Decarbonisation</u>

  Challenges.
- 54. Wen, X. et al. (2024). Deep learning-driven hybrid model for short-term load forecasting and smart grid information management. Sci Rep, Vol 14, 13720. Nature Publishing Group.
- 55. Ahmadzadeh, S. et al. (2021). A Review on Communication Aspects of Demand Response Management for Future 5G IoT- Based Smart Grids. IEEE Access, Vol 9, 77555–77571.
- 56. Haben, S. *et al.* (2021). Review of low voltage load forecasting:

  Methods, applications, and recommendations. Applied Energy, Vol 304, 117798.
- 57. IBM (2023). What is the Internet of Things (IoT)?

- 58. The Future of Electricity New Technologies Transforming the Grid Edge.
- 59. Juniper Research Global Smart Grid Market: 2024-2029.
- 60. Medium (2024). Amsterdam's
  Innovative Technologies and
  Sustainable Solutions for
  Combating Climate Change. Global
  Climate Solutions.
- 61. EU Commission <u>CITY-ZEN Site</u> <u>Amsterdam | Smart Cities</u> <u>Marketplace.</u>
- 62. EPS (2024). Preventing Grid
  Overload: The Role of Battery
  Energy Storage Systems.
  Engineering Power Solutions.
- 63. UK Government <u>UK battery</u> strategy. *GOV.UK*.
- 64. MIT Technology Review Four ways
  AI is making the power grid faster
  and more resilient. MIT Technology
  Review.
- 65. Zheng, L. et al. (2023). Artificial intelligence-driven rechargeable batteries in multiple fields of development and application towards energy storage. Journal of Energy Storage, Vol 73, 108926.
- 66. Xu, M. et al. (2019). Fast charging optimization for lithium-ion batteries based on dynamic programming algorithm and electrochemical-thermal-capacity fade coupled model. Journal of Power Sources, Vol 438, 227015.
- 67. Powell, J. et al. (2024). Smart grids: A comprehensive survey of challenges, industry applications, and future trends. Energy Reports, Vol 11, 5760–5785.
- 68. Ahmad, T. et al. (2021). Artificial intelligence in sustainable energy industry: Status Quo, challenges and opportunities. Journal of Cleaner Production, Vol 289, 125834.
- 69. Northeast Group <u>Electricity Theft & Non-Technical Losses</u>. *Northeast Group*.
- 70. Jokar, P. *et al.* (2016). <u>Electricity</u> <u>Theft Detection in AMI Using</u>

- Customers' Consumption Patterns. *IEEE Transactions on Smart Grid*, Vol 7, 216–226.
- 71. Ahir, R. K. et al. (2022). Patternbased and context-aware electricity theft detection in smart grid. Sustainable Energy, Grids and Networks, Vol 32, 100833.
- 72. de Souza, M. A. *et al.* (2020).

  <u>Detection and identification of energy theft in advanced metering infrastructures.</u> *Electric Power Systems Research*, Vol 182, 106258.
- 73. IoT Times (2024). Smart Grids and AI: The Future of Efficient Energy Distribution.
- 74. IBM (2024). Cost of a Data Breach Report 2024.
- 75. Shedrack Onwusinkwue *et al.* (2024). Artificial intelligence (AI) in renewable energy: A review of predictive maintenance and energy optimization. *World J. Adv. Res. Rev.*, Vol 21, 2487–2799.
- 76. Cheng, J. C. P. *et al.* (2020). <u>Datadriven predictive maintenance</u> <u>planning framework for MEP</u> <u>components based on BIM and IoT using machine learning algorithms.</u> *Automation in Construction*, Vol 112, 103087.
- 77. PWC, Mainnovation Predictive Maintenance Beyond the hype: PdM 4.0 delivers results.
- 78. 3rdPlace (2021). <u>Digitizing</u> documents and Classifying them with AI. *3rdPlace*.
- 79. Digitalisation of Energy.
- 80. Microsoft (2024). <u>Driving</u>
  operational efficiency and
  sustainability with AI and data
  modernization. *Microsoft Industry*Blogs.
- 81. Engineering anf Technology
  Magazine (2022). Google and UK
  Power Networks develop digital
  map of electricity cables.
- 82. Current (2022). Google develops world-first AI-powered electricity cable map software with UK Power Networks. Current News.

- 83. <u>Distribution Connection and Use of</u> System Agreement.
- 84. UK Power Networks, C. number 3870728 Embedded Capacity Register 2 1MW and above. https://ukpowernetworks.opendata soft.com/. UK Power Networks, Company number 3870728.
- 85. Costa, T. et al. (2024). Employing machine learning for advanced gap imputation in solar power generation databases. Sci Rep, Vol 14, 23801. Nature Publishing Group.
- 86. IBM (2024). What Is a Microgrid?
- 87. Shahbazitabar, M. et al. (2021). An Introduction to Microgrids,
  Concepts, Definition, and
  Classifications. in Microgrids:
  Advances in Operation, Control,
  and Protection. (eds. AnvariMoghaddam, A. et al.) 3–16.
  Springer International Publishing.
- 88. Energy Pool (2023). What is a microgrid? Benefits, Types, and Applications. Energy Pool Smart Energy Management.
- 89. Antonopoulos, I. *et al.* (2020).

  Artificial intelligence and machine learning approaches to energy demand-side response: A systematic review. Renewable and Sustainable Energy Reviews, Vol 130, 109899.
- 90. Zhang, Y. et al. (2022). Review on deep learning applications in frequency analysis and control of modern power system.

  International Journal of Electrical Power & Energy Systems, Vol 136, 107744.
- 91. Swarnkar, M. et al. (2023). Use of AI for development and generation of renewable energy. in 2023 IEEE Renewable Energy and Sustainable E-Mobility Conference (RESEM). 1–5.
- 92. Ukoba, K. *et al.* (2024). Optimizing renewable energy systems through artificial intelligence: Review and future prospects. *Energy &*

- *Environment*, 0958305X241256293. SAGE Publications Ltd STM.
- 93. Offshore Renewable Energy
  Catapult Accelerating Offshore
  Wind: The role of innovative
  technology in decision-making and
  faster consenting.
- 94. Machlev, R. *et al.* (2022).

  <u>Explainable Artificial Intelligence</u>
  (XAI) techniques for energy and power systems: Review, challenges and opportunities. *Energy and AI*, Vol 9, 100169.
- 95. IBM (2024). What Is Black Box AI?
- 96. National Protective Security Authority <u>Critical National</u> Infrastructure.
- 97. Laplante, P. *et al.* (2020). <u>Artificial Intelligence and Critical Systems:</u>
  <u>From Hype to Reality.</u> *Computer*,
  Vol 53, 45–52.
- 98. Alsaigh, R. *et al.* (2023). <u>AI</u>

  <u>explainability and governance in</u>

  <u>smart energy systems: A review.</u> *Front. Energy Res.*, Vol 11,

  Frontiers.
- 99. Smart Energy International (2024).

  AI and the power sector: Ushering
  in a new era. Smart Energy
  International.
- 100. Data Ideology (2024).

  <u>Understanding AI and Data</u>

  <u>Dependency.</u> *Data Ideology*.
- 101. UK Government <u>Energy Data</u> Taskforce. *GOV.UK*.
- 102. Imperial College London Balancing Privacy and Access to Smart Meter Data.
- 103. Ofgem (2023). Decision on updates to Data Best Practice Guidance and Digitalisation Strategy and Action Plan Guidance.
- 104. National Grid <u>Connected Data</u> Portal.
- 105. Ofgem (2024). <u>Governance of the Data Sharing Infrastructure.</u>
- 106. ARUP Digital Spine feasibility study.
- 107. UK Government <u>Digital spine</u> feasibility study: exploring a data sharing infrastructure for the energy system. *GOV.UK*.

- 108. The ESO Digitalisation Strategy and Action Plan Update.
- 109. Smart Energy International (2023).

  <u>Survey: Energy sector seeing major</u>

  <u>data science skills gap.</u> Smart

  <u>Energy International.</u>
- 110. Energy Systems Catapult <u>Survey</u>
  <u>Reveals Digital & Data Skills Gap in</u>
  <u>the Energy Sector.</u> Energy Systems
  Catapult.
- 111. Innovation News Network (2024).

  How AI can revolutionise workforce
  training to solve the energy skills
  gap. Innovation News Network.
- 112. Zudu (2023). Workforce, AI & The Future of The Energy Sector. Zudu.
- 113. ADNOC *et al.* AI and Energy for a Sustainable Future.
- 114. Intellias <u>Artificial Intelligence in the Energy Sector: Benefits and Use</u>
  Cases. *Intellias*.
- 115. Engel-Cox, J. A. et al. (2023).

  Accomplishments and challenges of metrics for sustainable energy, population, and economics as illustrated through three countries.

  Front. Sustain. Energy Policy, Vol 2, Frontiers.
- 116. Pless, J. *et al.* (2020). <u>Bringing</u>
  <u>rigour to energy innovation policy</u>
  <u>evaluation.</u> *Nat Energy*, Vol 5, 284–290. Nature Publishing Group.
- 117. Dileep, G. (2020). A survey on smart grid technologies and applications. Renewable Energy, Vol 146, 2589–2625.
- 118. IBM (2024). What is an edge network?
- 119. Singh, R. *et al.* (2023). <u>Edge AI: A survey</u>. *Internet of Things and Cyber-Physical Systems*, Vol 3, 71–92.
- 120. Amazon Web Services What is Network Latency? Amazon Web Services, Inc.
- 121. IBM (2023). What Is Latency?
- 122. Feng, C. *et al.* (2021). Smart grid encounters edge computing: opportunities and applications.

  Advances in Applied Energy, Vol 1, 100006.

- 123. Ben Slama, S. (2022). Prosumer in smart grids based on intelligent edge computing: A review on Artificial Intelligence Scheduling Techniques. Ain Shams Engineering Journal, Vol 13, 101504.
- 124. RAND (2024). <u>The Promise and Peril of AI in the Power Grid.</u>
- 125. UK Government Energy
  Digitalisation Taskforce report: joint
  response by BEIS, Ofgem and
  Innovate UK. GOV.UK.
- 126. Energy Systems Catapult Energy
  Digitalisation Taskforce publishes
  recommendations for a digitalised
  Net Zero energy system. Energy
  Systems Catapult.
- 127. AI Now Institute (2023).

  <u>Confronting Tech Power.</u> AI Now Institute.
- 128. AI Now Institute (2023).

  <u>Computational Power and AI.</u> AI Now Institute.
- 129. Sevilla, J. et al. (2022). Compute
  Trends Across Three Eras of
  Machine Learning. in 2022
  International Joint Conference on
  Neural Networks (IJCNN). 1–8.
- 130. OECD (2023). A blueprint for building national compute capacity for artificial intelligence. OECD.
- 131. Olson, E. (2024). <u>Digital</u>
  <u>Transformation and AI in Energy</u>
  <u>Systems: Applications, Challenges, and the Path Forward.</u> in *Digital*<u>Sustainability: Leveraging Digital</u>
  <u>Technology to Combat Climate</u>
  <u>Change.</u> (eds. Lynn, T. et al.) 63–79. Springer Nature Switzerland.
- 132. World Economic Forum (2024). AI and energy: Will AI reduce emissions or increase demand? World Economic Forum.
- 133. CBRE <u>Will Artificial Intelligence</u> <u>enable the net zero transition or</u> derail it? *CBRE*.
- 134. <u>Data centers worldwide by country</u> 2024. *Statista*.
- 135. UK Government <u>Data centres to be</u> given massive boost and protections from cyber criminals and IT blackouts. GOV.UK.

- 136. BBC news (2023). <u>Data centres use</u> almost a fifth of Irish electricity. BBC News.
- 137. Morgan Stanley <u>Powering</u> <u>Generative AI.</u> *Morgan Stanley*.
- 138. Chen, H. *et al.* (2022). <u>Current</u>
  <u>Status and Challenges for Liquid-</u>
  <u>Cooled Data Centers.</u> *Front. Energy Res.*, Vol 10, Frontiers.
- 139. Alkrush, A. A. et al. (2024). <u>Data centers cooling: A critical review of techniques, challenges, and energy saving solutions.</u> *International Journal of Refrigeration*, Vol 160, 246–262.
- 140. OECD (2022). Measuring the environmental impacts of artificial intelligence compute and applications. OECD.
- 141. The UK Data Centre Sector The most important industry you've never heard of.
- 142. The Guardian (2024). <u>Google's</u> emissions climb nearly 50% in five years due to AI energy demand.

  The Guardian.
- 143. Li, P. et al. (2023). Making AI Less
  'Thirsty': Uncovering and
  Addressing the Secret Water
  Footprint of AI Models. arXiv.
- 144. <u>Electricity 2024 Analysis and</u> forecast to 2026.
- 145. RTE News (2022). No new data centres for Dublin for the 'foreseeable'.
- 146. Data Centre Dynamics (2019).

  <u>Reducing the carbon footprint of Singapore.</u>
- 147. Data Centre Dynamics (2024).

  <u>Dutch Data Center Association says</u>
  <u>new Amsterdam rules are 'symbol</u>
  politics'.
- 148. Data Centre Dynamics (2024). <u>The ongoing impact of Amsterdam's data center moratorium.</u>
- 149. Energy REV The practice of AI and ethics in energy transition futures.
- 150. Véliz, C. *et al.* (2018). <u>Protecting</u>
  <u>data privacy is key to a smart</u>
  <u>energy future.</u> *Nat Energy*, Vol 3,
  702–704. Nature Publishing Group.

- 151. Carmody, J. *et al.* (2021). <u>AI and privacy concerns: a smart meter case study.</u> *JICES*, Vol 19, 492–505.
- 152. Reuters (2023). <u>Russian spies</u>
  <u>behind cyber attack on Ukraine</u>
  <u>power grid in 2022 researchers.</u> *Reuters.*
- 153. International Energy Agency (2023). Cybersecurity is the power system lagging behind? *IEA*.
- 154. Deloitte <u>The energy system is</u> becoming more distributed as we transition to renewables.
- 155. Cyber News (2022). <u>Deutsche</u>
  <u>Windtechnik hit with a cyberattack,</u>
  <u>a third on Germany's wind energy</u>
  <u>sector.</u> Cybernews.
- 156. Wall Street Journal (2022).

  <u>European Wind-Energy Sector Hit in</u>
  Wave of Hacks. *Wall Street Journal*.
- 157. The Stack (2022). <u>Viasat says KA-SAT outage likely caused by a</u> 'cyber event'. *The Stack*.
- 158. PV Magazine (2022). <u>Satellite cyber</u> attack paralyzes 11GW of German wind turbines. pv magazine International.
- 159. The Record <u>German wind farm</u> operator confirms cybersecurity incident. *The Record*.
- 160. Citizens Advice Use of AI within the energy sector call for input.
- 161. Bruegel (2022). A gender perspective on artificial intelligence and jobs: The vicious cycle of digital inequality. Bruegel | The Brussels-based economic think tank.
- 162. Sustainable Energy for All (2024).

  The Gender-Energy Nexus in the AI

  Era: Challenges and Opportunities.

  Sustainable Energy for All |

  SEforALL.
- 163. <u>The Gender-Energy Nexus in the AI</u> <u>Era: Challenges and Opportunities.</u>
- 164. Awogbemi, O. et al. (2024).

  Contributions of artificial
  intelligence and digitization in
  achieving clean and affordable
  energy. Intelligent Systems with
  Applications, Vol 22, 200389.

- 165. <u>Artificial Intelligence for the energy</u> system: ethical and social impacts.
- 166. Borragán, G. et al. (2024).

  Consumers' adoption characteristics of distributed energy resources and flexible loads behind the meter.

  Renewable and Sustainable Energy Reviews, Vol 203, 114745.
- 167. Aldoseri, A. et al. (2023). Re-Thinking Data Strategy and Integration for Artificial Intelligence: Concepts, Opportunities, and Challenges. Applied Sciences, Vol 13, 7082. Multidisciplinary Digital Publishing Institute.
- 168. Gautier, A. et al. (2020). AI algorithms, price discrimination and collusion: a technological, economic and legal perspective. Eur J Law Econ, Vol 50, 405–435.
- 169. Bloomberg Law <u>AI's Magnified</u>
  <u>Risks, Payoffs in Energy Industry</u>
  <u>Demand Vigilance.</u>
- 170. Leofante, F. et al. (2024).

  <u>Contestable AI Needs</u>

  <u>Computational Argumentation.</u> KR,
  Vol 21, 888–896.
- 171. Association of Computing
  Machinery (2018). Regulating for
  'Normal AI Accidents': Operational
  Lessons for the Responsible
  Governance of Artificial Intelligence
  Deployment. in Proceedings of the
  2018 AAAI/ACM Conference on AI,
  Ethics, and Society. 223–228.
  Association for Computing
  Machinery.
- 172. Future of Jobs Report 2023.
- 173. CLOU Global (2024). The Double-Edged Sword: AI and Job Evolution in the Energy Industry. CLOU GLOBAL.
- 174. Wang, K.-H. et al. (2025). AIinduced job impact: Complementary or substitution? Empirical insights and sustainable technology considerations. Sustainable Technology and Entrepreneurship, Vol 4, 100085.
- 175. Financial Times (2024). AI is accelerating the energy transition,

- <u>say industry leaders.</u> *Financial Times.*
- 176. Yurdem, B. *et al.* (2024). <u>Federated learning: Overview, strategies, applications, tools and future directions. *Heliyon*, Vol 10, e38137.</u>
- 177. IEEE Digital Privacy What Is Homomorphic Encryption?
- 178. Asghar, M. R. *et al.* (2017). Smart Meter Data Privacy: A Survey. *IEEE* Communications Surveys & Tutorials, Vol 19, 2820–2835.
- 179. European Parliament (2023). <u>EU AI</u>
  <u>Act: first regulation on artificial</u>
  <u>intelligence.</u> *Topics | European Parliament.*
- 180. Capco <u>The EU AI Act: A strategic framework for responsible AI in energy.</u>
- 181. National Institute of Standards and Technology (2024). The NIST Cybersecurity Framework (CSF)
  2.0. NIST CSWP 29. National Institute of Standards and Technology.
- 182. National Cyber Security Centre Guidelines for secure AI system development.
- 183. <u>Potential Benefits and Risks of Artificial Intelligence for Critical Energy Infrastructure.</u>
- 184. Rehan, H. (2023). AI in Renewable Energy: Enhancing America's Sustainability and Security. Vol 1, 10–24.
- 185. González-Sendino, R. et al. (2024).

  Mitigating bias in artificial
  intelligence: Fair data generation
  via causal models for transparent
  and explainable decision-making.
  Future Generation Computer
  Systems, Vol 155, 384–401.
- 186. National Institute of Standards and Technology (2021). Four principles of explainable artificial intelligence. NIST IR 8312. National Institute of Standards and Technology (U.S.).
- 187. UK Government Ensuring trust in AI to unlock £6.5 billion over next decade. GOV.UK.

- 188. Deloitte *AI Risk Management Risk mitigation 'now' and strategic insights 'next'*.
- 189. Tara Energy (2024). AI in Energy:
  Advantages, Challenges, and
  Innovations. *Tara Energy*.
- 190. UK Government (2024). Manchester Prize. GOV.UK.
- 191. Manchester Prize Round Two: Clean Energy Systems. *Manchester Prize*.
- 192. BBC news (2023). <u>Chancellor</u> announces £1m Manchester Prize for AI. BBC News.
- 193. DNV <u>Assurance of AI-Enabled</u> <u>Systems: Trustworthy AI</u> <u>Recommended Practices.</u> DNV.
- 194. European Comission (2024). <u>Green cloud and green data centres | Shaping Europe's digital future.</u>
- 195. DLA Piper New Data Centre
  Sustainability Reporting Obligations
  Introduced through the European
  Commission Delegated Regulation
  (EU).
- 196. Nadeem, T. B. et al. (2023).

  Distributed energy systems: A
  review of classification,
  technologies, applications, and
  policies. Energy Strategy Reviews,
  Vol 48, 101096.
- 197. Cao, M. et al. (2023). A Reliable Energy Trading Strategy in Intelligent Microgrids Using Deep Reinforcement Learning. Computers and Electrical Engineering, Vol 110, 108796.
- 198. Trivedi, R. et al. (2022).

  Implementation of artificial
  intelligence techniques in microgrid
  control environment: Current
  progress and future scopes. Energy
  and AI, Vol 8, 100147.
- 199. Ravivarma, K. et al. (2024). A peerto-peer energy trading model for community microgrids with energy management. Peer-to-Peer Netw. Appl., Vol 17, 2538–2554.
- 200. Gao, G. et al. (2023). <u>Distributed</u>
  <u>Energy Trading and Scheduling</u>
  <u>Among Microgrids via Multiagent</u>
  <u>Reinforcement Learning</u>. *IEEE Transactions on Neural Networks*

- and Learning Systems, Vol 34, 10638–10652.
- 201. Wang, Q. et al. (2024). Does artificial intelligence promote energy transition and curb carbon emissions? The role of trade openness. Journal of Cleaner Production, Vol 447, 141298.
- 202. Luo, Q. et al. (2024). Exploring artificial intelligence and urban pollution emissions: 'Speed bump' or 'accelerator' for sustainable development? Journal of Cleaner Production, Vol 463, 142739.
- 203. Qin, M. et al. (2024). Do the benefits outweigh the disadvantages? Exploring the role of artificial intelligence in renewable energy. Energy Economics, Vol 131, 107403.
- 204. Dong, Z. et al. (2024). The impact of artificial intelligence on the energy transition: The role of regulatory quality as a guardrail, not a wall. Energy Economics, Vol 140, 107988.
- 205. OECD (2024). Review of relevance of the OECD Recommendation on ICTs and the Environment. OECD.

## **Contributors**

POST is grateful to Daniel Lewis for researching this briefing, and to all contributors and reviewers. For further information on this subject, please contact the co-author, Josh Oxby.

Members of the POST board\*

Dr Shahid Awan, University of West Scotland

Jamie Berryhill, Organisation for Economic Co-operation and Development (OECD)\*

Zachary Egan, International Energy Agency (IEA)\*

Dr Ferheen Ayaz, City St. George's, University of London

Dr Indrachapa Bandara, WMG University of Warwick

Edwin Brown, University of Sheffield

Prof. Alastair Buckley, University of Sheffield

Dr Stuart Bradley, WMG University of Warwick

Prof. Winston Chow, Singapore Management University

Dr Truong Dinh, WMG University of Warwick

Dr Cristina Dominguez, Sustainable Energy for All

Dr Mona Faraji Niri, WMG University of Warwick

Dr Johnathan Foster, University of Sheffield

Christian Graham, Friends of the Earth

Jed Griffiths, Microsoft

Guy Gueritz, NVIDIA

Dr Stephen Haben, Energy Systems Catapult

Calum Handforth, Tony Blair Institute for Global Change\*

Bryan Hill, Microsoft

Johannes Kirnberger, Organisation for Economic Co-operation and Development (OECD)\*

Dr Karen Lai, Durham University

Tone Langengen, Tony Blair Institute for Global Change\*

Dr Francesco Leofante, Imperial College London

Dr Felicia Liu, University of York

Valerie Livina, National Physical Laboratory

Sam Mathew, Microsoft

Dr Andrew McGordon, WMG University of Warwick

Prof. Richard McMahon, WMG University of Warwick

Dr Althaff Mohideen, University of West Scotland

Edward Mulholland, Scottish Power Energy Networks

Dr Mustafa Mustafa, University of Manchester

**NESO** 

Dr Nishant Narayan, Sustainable Energy for All

Dr Panagiotis Papadopoulos, University of Manchester

Prof. Evangelos Pournaras, University of Leeds

Dr Robin Preece, University of Manchester

Declan Stock, Ofgem

Ava Strasser, Sustainable Energy for All
Dr Kimberly Tam, University of Plymouth
Jamie Taylor, University of Sheffield /
National Energy System Operator
Jonathan Thurlwell, Ofgem
Charles Wood, Energy UK
Samuel Young, Energy Systems Catapult
Prof. Muhammad Zeeshan Shakir,
University of the West of Scotland

<sup>\*</sup> Denotes people who acted as external reviewers of this briefing

The Parliamentary Office of Science and Technology (POST) is an office of both Houses of Parliament. It produces impartial briefings designed to make research evidence accessible to the UK Parliament. Stakeholders contribute to and review POSTnotes. POST is grateful to these contributors.

Our work is published to support Parliament. Individuals should not rely upon it as legal or professional advice, or as a substitute for it. We do not accept any liability whatsoever for any errors, omissions or misstatements contained herein. You should consult a suitably qualified professional if you require specific advice or information. Every effort is made to ensure that the information contained in our briefings is correct at the time of publication. Readers should be aware that briefings are not necessarily updated to reflect subsequent changes. This information is provided subject to the conditions of the Open Parliament Licence.

If you have any comments on our briefings please email <a href="mailto:papers@parliament.uk">papers@parliament.uk</a>. Please note that we are not always able to engage in discussions with members of the public who express opinions about the content of our research, although we will carefully consider and correct any factual errors.

If you have general questions about the work of the House of Commons email <a href="mailto:hcenquiries@parliament.uk">hcenquiries@parliament.uk</a> or the House of Lords email <a href="mailto:hlinfo@parliament.uk">hlinfo@parliament.uk</a>.

DOI: https://doi.org/10.58248/PN735

Image Credit: kossmoss - Licensed by Adobe Stock

POST's published material is available to everyone at post.parliament.uk. Get our latest research delivered straight to your inbox. Subscribe at post.parliament.uk/subscribe.



**≥** post@parliament.uk



